

Learning to See Physics

Goal: see an interpretable scene representation, and model its dynamics Motivation

- An object-based, compact, disentangled representation has wide applications.
- Existing models for scene dynamics do not have a perception module.

Visual Observation

Solution: looping in a forward physics engine and a graphics engine in recognition Advantages

- Generative, simulation engines bring in symbolic representation naturally.
- The learning paradigm adapts to a variable number of objects in the scene.
- The learned representations have wide applications with simulation engines.

Visual De-animation

- The perception module explains the scene by detecting and describing the object in each segment proposal, in a scene de-rendering style [4].
- The model aims to minimize two losses: the inference loss after the perception module, and the reconstruction loss after the simulation engines.

References

- [1] Wu*, Yildirim*, et al. Galileo: Perceiving Physical Object Properties. NIPS 2015
- [2] Lerer et al. Learning Physical Intuition of Block Towers by Example. ICML 2016
- [3] Chang et al. A Compositional Object-Based Approach to Learning Physical Dynamics. ICLR 2017
- [4] Wu et al. Neural Scene De-rendering. CVPR 2017
- [5] Watters et al. Visual Interaction Networks. NIPS 2017

Learning to See Physics via Visual De-animation

Pushmeet Kohli³ William T. Freeman^{1,4} Erika Lu² Jiajun Wu¹ 1 Massachusetts Institute of Technology 2 University of Oxford

The Physical World

Visual Observation

Setup

Experiments on Synthetic Videos Generated by Physics Engines

Input (in red) and ground truth

Reconstruction and prediction

Input (in red) and ground truth

Reconstruction

and prediction

Frame t-2

Setup

- Rigid body simulation with a non differentiable physics engine

Rigiu Douy Si		i a non-une	rentiable phy	ysics engin	IE	
Pre-training c	on data synth	nesized by th	e generative	models		S. 4/2
End-to-end fine-tuning with the reconstruction loss and the loss on stability prediction (with REINFORCE)					loss Video (input in red)	
Accuracies on Stability Prediction						
Methods	2 Blocks	3 Blocks	4 Blocks	Mean	VDA (ours)	
VDA (ours)	75	76	73	75		-
PhysNet [2]	66	66	73	68	PhysNet [2]	
GoogleNet	70	70	70	70	T HYSINCE [2]	
Chance	50	50	50	50		

What if ... ?

Input

VDA

Joshua B. Tenenbaum¹ 3 DeepMind 4 Google

Study 1: Billiard Tables

• 2D physics simulation with a neural, differentiable physics engine [3] • Pre-training on data synthesized by the graphics and physics engines End-to-end fine-tuning with the reconstruction loss using back-propagation, as simulation engines are differentiable

Study 2: Block Towers

How to ... ?

Stabilizing force

Video (input in red)

> VDA (ours)

Experiments on Real Videos from YouTube

Input (in red) ground trut

Reconstruction and prediction

Input (in red) ground truth

Reconstruction and prediction

Results on the Block Tower Dataset [2]

More Qualitative Results