Learning to See Physics via Visual De-animation
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Learning to See Physics Study 1: Billiard Tables
Setup

Goal: see an interpretable scene representation, and model 1its dynamics
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representation has wide applications.
not have a perception module.
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Experiments on Synthetic Videos Generated by Physics Engines

2D physics simulation with a neural, differentiable physics engine [3]
Pre-training on data synthesized by the graphics and physics engines
End-to-end fine-tuning with the reconstruction loss using back-propagation, as simulation engines are differentiable

Experiments on Real Videos from YouTube
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Visual De-animation
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Study 2: Block Towers

Results on the Block Tower Dataset [2]
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