
Learning to See Physics via Visual De-animation

Jiajun Wu
MIT CSAIL

Erika Lu
University of Oxford

Pushmeet Kohli
DeepMind

William T. Freeman
MIT CSAIL, Google Research

Joshua B. Tenenbaum
MIT CSAIL

Abstract

We introduce a paradigm for understanding physical scenes without human an-
notations. At the core of our system is a physical world representation that is
first recovered by a perception module and then utilized by physics and graphics
engines. During training, the perception module and the generative models learn
by visual de-animation — interpreting and reconstructing the visual information
stream. During testing, the system first recovers the physical world state, and then
uses the generative models for reasoning and future prediction.
Even more so than forward simulation, inverting a physics or graphics engine is
a computationally hard problem; we overcome this challenge by using a convo-
lutional inversion network. Our system quickly recognizes the physical world
state from appearance and motion cues, and has the flexibility to incorporate both
differentiable and non-differentiable physics and graphics engines. We evaluate our
system on both synthetic and real datasets involving multiple physical scenes, and
demonstrate that our system performs well on both physical state estimation and
reasoning problems. We further show that the knowledge learned on the synthetic
dataset generalizes to constrained real images.

1 Introduction

Inspired by human abilities, we wish to develop machine systems that understand scenes. Scene
understanding has multiple defining characteristics which break down broadly into two features. First,
human scene understanding is rich. Scene understanding is physical, predictive, and causal: rather
than simply knowing what is where, one can also predict what may happen next, or what actions
one can take, based on the physics afforded by the objects, their properties, and relations. These
predictions, hypotheticals, and counterfactuals are probabilistic, integrating uncertainty as to what is
more or less likely to occur. Second, human scene understanding is fast. Most of the computation has
to happen in a single, feedforward, bottom-up pass.

There have been many systems proposed recently to tackle these challenges, but existing systems
have architectural features that allow them to address one of these features but not the other. Typical
approaches based on inverting graphics engines and physics simulators [Kulkarni et al., 2015b]
achieve richness at the expense of speed. Conversely, neural networks such as PhysNet [Lerer et al.,
2016] are fast, but their ability to generalize to rich physical predictions is limited.

We propose a new approach to combine the best of both. Our overall framework for representation is
based on graphics and physics engines, where graphics is run in reverse to build the initial physical
scene representation, and physics is then run forward to imagine what will happen next or what can
be done. Graphics can also be run in the forward direction to visualize the outputs of the physics
simulation as images of what we expect to see in the future, or under different viewing conditions.
Rather than use traditional, often slow inverse graphics methods [Kulkarni et al., 2015b], we learn to

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



visual data visual data

physical world physical world

Figure 1: Visual de-animation — we would like to recover the physical world representation behind
the visual input, and combine it with generative physics simulation and rendering engines.

invert the graphics engine efficiently using convolutional nets. Specifically, we use deep learning to
train recognition models on the objects in our world for object detection, structure and viewpoint
estimation, and physical property estimation. Bootstrapping from these predictions, we then infer the
remaining scene properties through inference via forward simulation of the physics engine.

Without human supervision, our system learns by visual de-animation: interpreting and reconstructing
visual input. We show the problem formulation in Figure 1. The simulation and rendering engines in
the framework force the perception module to extract physical world states that best explain the data.
As the physical world states are inputs to physics and graphics engines, we simultaneously obtain an
interpretable, disentangled, and compact physical scene representation.

Our framework is flexible and adaptable to a number of graphics and physics engines. We present
model variants that use neural, differentiable physics engines [Chang et al., 2017], and variants that
use traditional physics engines, which are more mature but non-differentiable [Coumans, 2010]. We
also explore various graphics engines operating at different levels, ranging from mid-level cues such
as object velocity, to pixel-level rendering of images.

We demonstrate our system on real and synthetic datasets across multiple domains: synthetic billiard
videos [Fragkiadaki et al., 2016], in which balls have varied physical properties, real billiard videos
from the web, and real images of block towers from Facebook AI Research [Lerer et al., 2016].

Our contributions are three-fold. First, we propose a novel generative pipeline for physical scene
understanding, and demonstrate its flexibility by incorporating various graphics and physics engines.
Second, we introduce the problem of visual de-animation – learning rich scene representations
without supervision by interpreting and reconstructing visual input. Third, we show that our system
performs well across multiple scenarios and on both synthetic and constrained real videos.

2 Related Work

Physical scene understanding has attracted increasing attention in recent years [Gupta et al., 2010,
Jia et al., 2015, Lerer et al., 2016, Zheng et al., 2015, Battaglia et al., 2013, Mottaghi et al., 2016b,
Fragkiadaki et al., 2016, Battaglia et al., 2016, Mottaghi et al., 2016a, Chang et al., 2017, Agrawal
et al., 2016, Pinto et al., 2016, Finn et al., 2016, Hamrick et al., 2017, Ehrhardt et al., 2017, Shao et al.,
2014, Zhang et al., 2016]. Researchers have attempted to go beyond the traditional goals of high-level
computer vision, inferring “what is where”, to capture the physics needed to predict the immediate
future of dynamic scenes, and to infer the actions an agent should take to achieve a goal. Most of these
efforts do not attempt to learn physical object representations from raw observations. Some systems
emphasize learning from pixels but without an explicitly object-based representation [Lerer et al.,
2016, Mottaghi et al., 2016b, Fragkiadaki et al., 2016, Agrawal et al., 2016, Pinto et al., 2016, Li et al.,
2017], which makes generalization challenging. Others learn a flexible model of the dynamics of
object interactions, but assume a decomposition of the scene into physical objects and their properties
rather than learning directly from images [Chang et al., 2017, Battaglia et al., 2016].

2



(e) Output(a) Input

(II) Physics engine (simulation)

(III) Graphics engine (rendering)

(b) Physical world 
representation

(c) Appearance cues

Object 
proposal

Object 
proposal

Physical 
object state

Physical 
object state

NMS

(I) Perception module

(d) Likelihood

Figure 2: Our visual de-animation (VDA) model contains three major components: a convolutional
perception module (I), a physics engine (II), and a graphics engine (III). The perception module
efficiently inverts the graphics engine by inferring the physical object state for each segment proposal
in input (a), and combines them to obtain a physical world representation (b). The generative physics
and graphics engines then run forward to reconstruct the visual data (e). See Section 3 for details.

There have been some works that aim to estimate physical object properties [Wu et al., 2016, 2015,
Denil et al., 2017]. Wu et al. [2015] explored an analysis-by-synthesis approach that is easily
generalizable, but less efficient. Their framework also lacked a perception module. Denil et al.
[2017] instead proposed a reinforcement learning approach. These approaches, however, assumed
strong priors of the scene, and approximate object shapes with primitives. Wu et al. [2016] used
a feed-forward network for physical property estimation without assuming prior knowledge of the
environment, but the constrained setup did not allow interactions between multiple objects. By
incorporating physics and graphics engines, our approach can jointly learn the perception module
and physical model, optionally in a Helmholtz machine style [Hinton et al., 1995], and recover an
explicit physical object representation in a range of scenarios.

Another line of related work is on future state prediction in either image pixels [Xue et al., 2016,
Mathieu et al., 2016] or object trajectories [Kitani et al., 2017, Walker et al., 2015]. There has also
been abundant research making use of physical models for human or scene tracking [Salzmann
and Urtasun, 2011, Kyriazis and Argyros, 2013, Vondrak et al., 2013, Brubaker et al., 2009]. Our
model builds upon and extends these ideas by jointly modeling an approximate physics engine and a
perceptual module, with wide applications including, but not limited to, future prediction.

Our framework also relates to the field of “vision as inverse graphics” [Zhu and Mumford, 2007,
Yuille and Kersten, 2006, Bai et al., 2012]. Connected to but different from traditional analysis-
by-synthesis approaches, recent works explored using deep neural networks to efficiently explain
an object [Kulkarni et al., 2015a, Rezende et al., 2016], or a scene with multiple objects [Ba et al.,
2015, Huang and Murphy, 2015, Eslami et al., 2016]. In particular, Wu et al. [2017] proposed “scene
de-rendering”, building an object-based, structured representation from a static image. Our work
incorporates inverse graphics with simulation engines for physical scene understanding and scene
dynamics modeling.

3 Visual De-animation

Our visual de-animation (VDA) model consists of an efficient inverse graphics component to build
the initial physical world representation from visual input, a physics engine for physical reasoning of
the scene, and a graphics engine for rendering videos. We show the framework in Figure 2. In this
section, we first present an overview of the system, and then describe each component in detail.

3.1 Overview

The first component of our system is an approximate inverse graphics module for physical object and
scene understanding, as shown in Figure 2-I. Specifically, the system sequentially computes object
proposals, recognizes objects and estimates their physical state, and recovers the scene layout.

3



The second component of our system is a physics engine, which uses the physical scene representation
recovered by the inverse graphics module to simulate future dynamics of the environment (Figure 2-
II). Our system adapts to both neural, differentiable simulators, which can be jointly trained with the
perception module, and rigid-body, non-differentiable simulators, which can be incorporated using
methods such as REINFORCE [Williams, 1992].

The third component of our framework is a graphics engine (Figure 2-III), which takes the scene
representations from the physics engine and re-renders the video at various levels (e.g. optical flow,
raw pixel). The graphics engine may need additional appearance cues such as object shape or color
(Figure 2c). Here, we approximate them using simple heuristics, as they are not a focus of our paper.
There is a tradeoff between various rendering levels: while pixel-level reconstruction captures details
of the scene, rendering at a more abstract level (e.g. silhouettes) may better generalize. We then use a
likelihood function (Figure 2d) to evaluate the difference between synthesized and observed signals,
and compute gradients or rewards for differentiable and non-differentiable systems, respectively.

Our model combines efficient and powerful deep networks for recognition with rich simulation
engines for forward prediction. This provides us two major advantages over existing methods:
first, simulation engines take an interpretable representation of the physical world, and can thus
easily generalize and supply rich physical predictions; second, the model learns by explaining the
observations — it can be trained in a self-supervised manner without requiring human annotations.

3.2 Physical Object and Scene Modeling

We now discuss each component in detail, starting with the perception module.

Object proposal generation Given one or a few frames (Figure 2a), we first generate a number of
object proposals. The masked images are then used as input to the following stages of the pipeline.

Physical object state estimation For each segment proposal, we use a convolutional network to
recognize the physical state of the object, which consists of intrinsic properties such as shape, mass,
and friction, as well as extrinsic properties such as 3D position and pose. The input to the network is
the masked image of the proposal, and the output is an interpretable vector for its physical state.

Physical world reconstruction Given objects’ physical states, we first apply non-maximum sup-
pression to remove object duplicates, and then reconstruct the physical world according to object
states. The physical world representation (Figure 2b) will be employed by the physics and graphics
engines for simulation and rendering.

3.3 Physical Simulation and Prediction

The two types of physics engines we explore in this paper include a neural, differentiable physics
engine and a standard rigid-body simulation engine.

Neural physics engines The neural physics engine is an extension of the recent work from Chang
et al. [2017], which simulates scene dynamics by taking object mass, position, and velocity. We extend
their framework to model object friction in our experiments on billiard table videos. Though basic,
the neural physics engine is differentiable, and thus can be end-to-end trained with our perception
module to explain videos. Please refer to Chang et al. [2017] for details of the neural physics engine.

Rigid body simulation engines There exist rather mature, rigid-body physics simulation engines,
e.g. Bullet [Coumans, 2010]. Such physics engines are much more powerful, but non-differentiable.
In our experiments on block towers, we used a non-differentiable simulator with multi-sample
REINFORCE [Rezende et al., 2016, Mnih and Rezende, 2016] for joint training.

3.4 Re-rendering with a Graphics Engine

In this work, we consider two graphics engines operating at different levels: for the billiard table
scenario, we use a renderer that takes the output of a physics engine and generates pixel-level
rendering; for block towers, we use one that computes only object silhouettes.

4



(a) shared appearance,
shared physics

(b) varied appearance,
varied physics

(c) shared appearance,
varied physics

Figure 3: The three settings of our synthetic billiard videos: (a) balls have the same appearance and
physical properties, where the system learns to discover them and simulate the dynamics; (b) balls
have the same appearance but different physics, and the system learns their physics from motion; (c)
balls have varied appearance and physics, and the system learns to associate appearance cues with
underlying object states, even from a single image.

Input (red) 
and 

ground truth

Reconstruction 
and prediction

Input (red) 
and 

ground truth

Reconstruction 
and prediction

Frame t-2 Frame t Frame t+2 Frame t+5 Frame t+10 Frame t-2 Frame t Frame t+2 Frame t+5 Frame t+10

Figure 4: Results on the billiard videos, comparing ground truth videos with our predictions. We
show two of three input frames (in red) due to space constraints. Left: balls share appearance and
physics (I), where our framework learns to discover objects and simulate scene dynamics. Top right:
balls have different appearance and physics (II), where our model learns to associate appearance with
physics and simulate collisions. It learns that the green ball should move further than the heavier
blue ball after the collision. Bottom right: balls share appearance but have different frictions (III),
where our model learns to associate motion with friction. It realizes from three input frames that the
right-most ball in the first frame has a large friction coefficient and will stop before the other balls.

4 Evaluation

We evaluate variants of our frameworks in three scenarios: synthetic billiard videos, real billiard
videos, and block towers. We also test how models trained on synthetic data generalize to real cases.

4.1 Billiard Tables: A Motivating Example

We begin with synthetic billiard videos to explore end-to-end learning of the perceptual module along
with differentiable simulation engines. We explore how our framework learns the physical object
state (position, velocity, mass, and friction) from its appearance and/or motion.

Data For the billiard table scenario, we generate data using the released code from Fragkiadaki
et al. [2016]. We updated the code to allow balls of different mass and friction. We used the billiard
table scenario as an initial exploration of whether our models can learn to associate visual object
appearance and motion with physical properties. As shown in Figure 3, we generated three subsets,
in which balls may have shared or differing appearance (color), and physical properties. For each
case, we generated 9,000 videos for training and 200 for testing.

(I) Shared appearance and physics (Figure 3a): balls all have the same appearance and the same
physical properties. This basic setup evaluates whether we can jointly learn an object (ball) discoverer
and a physics engine for scene dynamics.

5



Datasets Methods Recon. Position Prediction (Abs) Velocity Prediction (Abs)

Appear. Physics Pixel MSE 1st 5th 10th 20th 1st 5th 10th 20th

Same Same
Baseline 0.046 4.58 18.20 46.06 119.97 2.95 5.63 7.32 8.45
VDA (init) 0.046 3.46 6.61 12.76 26.10 1.41 1.97 2.34 2.65
VDA (full) 0.044 3.25 6.52 12.34 25.55 1.37 1.87 2.22 2.55

Diff Diff.
Baseline 0.058 6.57 26.38 70.47 180.04 3.78 7.62 10.51 12.02
VDA (init) 0.058 3.82 8.92 17.09 34.65 1.65 2.27 3.02 3.21
VDA (full) 0.055 3.55 8.58 16.33 32.97 1.64 2.20 2.89 3.05

Same Diff.
Baseline 0.038 9.58 79.78 143.67 202.56 12.37 23.42 25.08 23.98
VDA (init) 0.038 6.06 19.75 34.24 46.40 3.37 5.16 5.01 3.77
VDA (full) 0.035 5.77 19.34 33.25 43.42 3.23 4.98 4.77 3.35

Table 1: Quantitative results on synthetic billiard table videos. We evaluate our visual de-animation
(VDA) model before and after joint training (init vs. full). For scene reconstruction, we compute
MSE between rendered images and ground truth. For future prediction, we compute the Manhattan
distance in pixels between predicted object position and velocity and ground truth in pixels, at the 1st,
5th, 10th, and 20th future frames. Our full model performs better. See qualitative results in Figure 4.

Frame 1 Frame 3 Frame 5 Frame 10
0

5

10

R
el

at
iv

e 
er

ro
r Baseline

VDA (init)
VDA (full)
Humans

(a) Future prediction results on synthetic billiard
videos of balls of the same physics

Frame 1 Frame 3 Frame 5 Frame 10
0

5

10

R
el

at
iv

e 
er

ro
r Baseline

VDA (init)
VDA (full)
Humans

(b) Future prediction results on synthetic billiard
videos of balls of varied frictions

Figure 5: Behavioral study results on future position prediction of billiard videos where balls have
the same physical properties (a), and balls have varied physical properties (b). For each model and
humans, we compare how their long-term relative prediction error grows, by measuring the ratio with
respect to errors in predicting the first next frame. Compared to the baseline model, the behavior of
our prediction models aligns well with human predictions.

(II) Varied appearance and physics (Figure 3b): balls can be of three different masses (light, medium,
heavy), and two different friction coefficients. Each of the six possible combinations is associated
with a unique color (appearance). In this setup, the scene de-rendering component should be able to
associate object appearance with its physical properties, even from a single image.

(III) Shared appearance, varied physics (Figure 3c): balls have the same appearance, but have one of
two different friction coefficients. Here, the perceptual component should be able to associate object
motion with its corresponding friction coefficients, from just a few input images.

Setup For this task, the physical state of an object is its intrinsic properties, including mass m and
friction f , and its extrinsic properties, including 2D position {x, y} and velocity v. Our system takes
three 256×256 RGB frames I1, I2, I3 as input. It first obtains flow fields from I1 to I2 and from I2
to I3 by a pretrained spatial pyramid network (SPyNet) [Ranjan and Black, 2017]. It then generates
object proposals by applying color filters on input images.

Our perceptual model is a ResNet-18 [He et al., 2015], which takes as input three masked RGB
frames and two masked flow images of each object proposal, and recovers the object’s physical
state. We use a differentiable, neural physics engine with object intrinsic properties as parameters; at
each step, it predicts objects’ extrinsic properties (position {x, y} and velocity v) in the next frame,
based on their current estimates. We employ a graphics engine that renders original images from the
predicted positions, where the color of the balls is set as the mean color of the input object proposal.
The likelihood function compares, at a pixel level, these rendered images and observations. It is
straightforward to compute the gradient of object position from rendered RGB images and ground
truth. Thus, this simple graphics engine is also differentiable, making our system end-to-end trainable.

6



Video

VDA
(ours)

Figure 6: Sample results on web videos of real billiard games and computer games with realistic
rendering. Left: our method correctly estimates the trajectories of multiple objects. Right: our
framework correctly predicts the two collisions (white vs. red, white vs. blue), despite the motion
blur in the input, though it underestimates the velocity of the red ball after the collision. Note that the
billiard table is a chaotic system, and highly accurate long-term prediction is intractable.

Our training paradigm consists of two steps. First, we pretrain the perception module and the neural
physics engine separately on synthetic data, where ground truth is available. The second step is
end-to-end fine-tuning without annotations. We observe that the framework does not converge well
without pre-training, possibly due to the multiple hypotheses that can explain a scene (e.g., we can
only observe relative, not absolute masses from collisions). We train our framework using SGD, with
a learning rate of 0.001 and a momentum of 0.9. We implement our framework in Torch7 [Collobert
et al., 2011]. During testing, the perception module is run in reverse to recover object physical states,
and the learned physics engine is then run in forward for future prediction.

Results Our formulation recovers a rich representation of the scene. With the generative models,
we show results in scene reconstruction and future prediction. We compare two variants of our
algorithm: the initial system has its perception module and neural physics engine separately trained,
while the full system has an additional end-to-end fine-tuning step, as discussed above. We also
compare with a baseline, which has the sample perception model, but in prediction, simply repeats
object dynamics in the past without considering interactions among them.

Scene reconstruction: given input frames, we are able to reconstruct the images based on inferred
physical states. For evaluation, we compute pixel-level MSE between reconstructions and observed
images. We show qualitative results in Figure 4 and quantitative results in Table 1.

Future prediction: with the learned neural simulation engine, our system is able to predict future
events based on physical world states. We show qualitative results in Figure 4 and quantitative results
in Table 1, where we compute the Manhattan distance in pixels between predicted positions and
velocities and the ground truth. Our model achieves good performance in reconstructing the scene,
understanding object physics, and predicting scene dynamics. See caption for details.

Behavioral studies We further conduct behavioral studies, where we select 50 test cases, show the
first three frames of each to human subjects, and ask them the positions of each ball in future frames.
We test 3 subjects per case on Amazon Mechanical Turk. For each model and humans, we compare
how their long-term relative prediction error grows, by measuring the ratio with respect to errors in
predicting the first next frame. As shown in Figure 5, the behavior of our models resembles human
predictions much better than the baseline model.

4.2 Billiard Tables: Transferring to Real Videos

Data We also collected videos from YouTube, segmenting them into two-second clips. Some
videos are from real billiard competitions, and the others are from computer games with realistic
rendering. We use it as an out-of-sample test set for evaluating the model’s generalization ability.

Setup and Results Our setup is the same as that in Section 4.1, except that we now re-train the
perceptual model on the synthetic data of varied physics, but with flow images as input instead of
RGB images. Flow images abstract away appearance changes (color, lighting, etc.), allowing the
model to generalize better to real data. We show qualitative results of reconstruction and future
prediction in Figure 6 by rendering our inferred representation using the graphics software, Blender.

7



Video

VDA
(ours)

PhysNet

Video

VDA
(ours)

PhysNet

(a) Our reconstruction and prediction results given a single
frame (marked in red). From top to bottom: ground truth,
our results, results from Lerer et al. [2016].

Methods # Blocks Mean
2 3 4

Chance 50 50 50 50
Humans 67 62 62 64

PhysNet 66 66 73 68
GoogLeNet 70 70 70 70

VDA (init) 73 74 72 73
VDA (joint) 75 76 73 75
VDA (full) 76 76 74 75

(b) Accuracy (%) of stability prediction on the
blocks dataset

Methods 2 3 4 Mean

PhysNet 56 68 70 65
GoogLeNet 70 67 71 69

VDA (init) 74 74 67 72
VDA (joint) 75 77 70 74
VDA (full) 76 76 72 75

(c) Accuracy (%) of stability prediction when
trained on synthetic towers of 2 and 4 blocks, and
tested on all block tower sizes.

Video

VDA
(ours)

(d) Our reconstruction and prediction results given a single frame (marked in red)

Figure 7: Results on the blocks dataset [Lerer et al., 2016]. For quantitative results (b), we compare
three variants of our visual de-animation (VDA) model: perceptual module trained without fine-tuning
(init), joint fine-tuning with REINFORCE (joint), and full model considering stability constraint
(full). We also compare with PhysNet [Lerer et al., 2016] and GoogLeNet [Szegedy et al., 2015].

4.3 The Blocks World

We now look into a different scenario — block towers. In this experiment, we demonstrate the
applicability of our model to explain and reason from a static image, instead of a video. We focus on
the reasoning of object states in the 3D world, instead of physical properties such as mass. We also
explore how our framework performs with non-differentiable simulation engines, and how physics
signals (e.g., stability) could help in physical reasoning, even when given only a static image.

Data Lerer et al. [2016] built a dataset of 492 images of real block towers, with ground truth
stability values. Each image may contain 2, 3, or 4 blocks of red, blue, yellow, or green color.
Though the blocks are the same size, their sizes in each 2D image differ due to 3D-to-2D perspective
transformation. Objects are made of the same material and thus have identical mass and friction.

8



Input VDA What if? Input Future Stabilizing force
Figure 8: Examples of predicting hypothetical scenarios and actively engaging with the scene. Left:
predictions of the outcome of forces applied to two stable towers. Right: multiple ways to stabilize
two unstable towers.

Setup Here, the physical state of an object (block) consists of its 3D position {x, y, z} and 3D
rotation (roll, pitch, yaw, each quantized into 20 bins). Our perceptual model is again a ResNet-18 [He
et al., 2015], which takes block silhouettes generated by simple color filters as input, and recovers
the object’s physical state. For this task, we implement an efficient, non-differentiable, rigid body
simulator, to predict whether the blocks are stable. We also implement a graphics engine to render
object silhouettes for reconstructing the input. Our likelihood function consists of two terms: MSE
between rendered silhouettes and observations, and the binary cross-entropy between the predicted
stability and the ground truth stability.

Our training paradigm resembles the classic wake-sleep algorithm [Hinton et al., 1995]: first, generate
10,000 training images using the simulation engines; second, train the perception module on synthetic
data with ground truth physical states; third, end-to-end fine-tuning of the perceptual module by
explaining an additional 100,000 synthetic images without annotations of physical states, but with
binary annotations of stability. We use multi-sample REINFORCE [Rezende et al., 2016, Mnih and
Rezende, 2016] with 16 samples per input, assuming each position parameter is from a Gaussian
distribution and each rotation parameter is from a multinomial distribution (quantized into 20 bins).
We observe that the training paradigm helps the framework converge. The other setting is the same as
that in Section 4.1.

Results We show results on two tasks: scene reconstruction and stability prediction. For each task,
we compare three variants of our algorithm: the initial system has its perception module trained
without fine-tuning; an intermediate system has joint end-to-end fine-tuning, but without considering
the physics constraint; and the full system considers both reconstruction and physical stability during
fine-tuning.

We show qualitative results on scene reconstruction in Figures 7a and 7d, where we also demonstrate
future prediction results by exporting our inferred physical states into Blender. We show quantitative
results on stability prediction in Table 7b, where we compare our models with PhysNet [Lerer et al.,
2016] and GoogleNet [Szegedy et al., 2015]. All given a static image as test input, our algorithms
achieve higher prediction accuracy (75% vs. 70%) efficiently (<10 milliseconds per image).

Our framework also generalizes well. We test out-of-sample generalization ability, where we train our
model on 2- and 4-block towers, but test it on all tower sizes. We show results in Table 7c. Further, in
Figure 8, we show examples where our physical scene representation combined with a physics engine
can easily make conditional predictions, answering “What happens if...”-type questions. Specifically,
we show frame prediction of external forces on stable block towers, as well as ways that an agent can
stabilize currently unstable towers, with the help of rich simulation engines.

5 Discussion

We propose combining efficient, bottom-up, neural perception modules with rich, generalizable
simulation engines for physical scene understanding. Our framework is flexible and can incorporate
various graphics and physics engines. It performs well across multiple synthetic and real scenarios,
reconstructing the scene and making future predictions accurately and efficiently. We expect our
framework to have wider applications in the future, due to the rapid development of scene description
languages, 3D reconstruction methods, simulation engines and virtual environments.

9



Acknowledgements

We thank Michael Chang, Donglai Wei, and Joseph Lim for helpful discussions. This work is
supported by NSF #1212849 and #1447476, ONR MURI N00014-16-1-2007, the Center for Brain,
Minds and Machines (NSF #1231216), Toyota Research Institute, Samsung, Shell, and the MIT
Advanced Undergraduate Research Opportunities Program (SuperUROP).

References

Pulkit Agrawal, Ashvin Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning to poke by poking:
Experiential learning of intuitive physics. In NIPS, 2016. 2

Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. Multiple object recognition with visual attention. In
ICLR, 2015. 3

Jiamin Bai, Aseem Agarwala, Maneesh Agrawala, and Ravi Ramamoorthi. Selectively de-animating video.
ACM TOG, 31(4):66, 2012. 3

Peter W Battaglia, Jessica B Hamrick, and Joshua B Tenenbaum. Simulation as an engine of physical scene
understanding. PNAS, 110(45):18327–18332, 2013. 2

Peter W Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, and Koray Kavukcuoglu. Interaction
networks for learning about objects, relations and physics. In NIPS, 2016. 2

Marcus A. Brubaker, David J. Fleet, and Aaron Hertzmann. Physics-based person tracking using the anthropo-
morphic walker. IJCV, 87(1-2):140–155, 2009. 3

Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum. A compositional object-based
approach to learning physical dynamics. In ICLR, 2017. 2, 4

Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A matlab-like environment for machine
learning. In BigLearn, NIPS Workshop, 2011. 7

Erwin Coumans. Bullet physics engine. Open Source Software: http://bulletphysics. org, 2010. 2, 4

Misha Denil, Pulkit Agrawal, Tejas D Kulkarni, Tom Erez, Peter Battaglia, and Nando de Freitas. Learning to
perform physics experiments via deep reinforcement learning. In ICLR, 2017. 3

Sebastien Ehrhardt, Aron Monszpart, Niloy J Mitra, and Andrea Vedaldi. Learning a physical long-term predictor.
arXiv:1703.00247, 2017. 2

SM Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, Koray Kavukcuoglu, and Geoffrey E Hinton. Attend,
infer, repeat: Fast scene understanding with generative models. In NIPS, 2016. 3

Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical interaction through video
prediction. In NIPS, 2016. 2

Katerina Fragkiadaki, Pulkit Agrawal, Sergey Levine, and Jitendra Malik. Learning visual predictive models of
physics for playing billiards. In ICLR, 2016. 2, 5

Abhinav Gupta, Alexei A Efros, and Martial Hebert. Blocks world revisited: Image understanding using
qualitative geometry and mechanics. In ECCV, 2010. 2

Jessica B Hamrick, Andrew J Ballard, Razvan Pascanu, Oriol Vinyals, Nicolas Heess, and Peter W Battaglia.
Metacontrol for adaptive imagination-based optimization. In ICLR, 2017. 2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
CVPR, 2015. 6, 9

Geoffrey E Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal. The “wake-sleep” algorithm for
unsupervised neural networks. Science, 268(5214):1158, 1995. 3, 9

Jonathan Huang and Kevin Murphy. Efficient inference in occlusion-aware generative models of images. In
ICLR Workshop, 2015. 3

Zhaoyin Jia, Andy Gallagher, Ashutosh Saxena, and Tsuhan Chen. 3d reasoning from blocks to stability. IEEE
TPAMI, 37(5):905–918, 2015. 2

10



Kris M. Kitani, De-An Huang, and Wei-Chiu Ma. Activity forecasting. In Group and Crowd Behavior for
Computer Vision, pages 273–294. Elsevier, 2017. 3

Tejas D Kulkarni, Pushmeet Kohli, Joshua B Tenenbaum, and Vikash Mansinghka. Picture: A probabilistic
programming language for scene perception. In CVPR, 2015a. 3

Tejas D Kulkarni, William F Whitney, Pushmeet Kohli, and Josh Tenenbaum. Deep convolutional inverse
graphics network. In NIPS, 2015b. 1

Nikolaos Kyriazis and Antonis Argyros. Physically plausible 3d scene tracking: The single actor hypothesis. In
CVPR, 2013. 3

Adam Lerer, Sam Gross, and Rob Fergus. Learning physical intuition of block towers by example. In ICML,
2016. 1, 2, 8, 9

Wenbin Li, Ales Leonardis, and Mario Fritz. Visual stability prediction for robotic manipulation. In ICRA, 2017.
2

Michael Mathieu, Camille Couprie, and Yann LeCun. Deep multi-scale video prediction beyond mean square
error. In ICLR, 2016. 3

Andriy Mnih and Danilo J Rezende. Variational inference for monte carlo objectives. In ICML, 2016. 4, 9

Roozbeh Mottaghi, Hessam Bagherinezhad, Mohammad Rastegari, and Ali Farhadi. Newtonian scene under-
standing: Unfolding the dynamics of objects in static images. In CVPR, 2016a. 2

Roozbeh Mottaghi, Mohammad Rastegari, Abhinav Gupta, and Ali Farhadi. “what happens if...” learning to
predict the effect of forces in images. In ECCV, 2016b. 2

Lerrel Pinto, Dhiraj Gandhi, Yuanfeng Han, Yong-Lae Park, and Abhinav Gupta. The curious robot: Learning
visual representations via physical interactions. In ECCV, 2016. 2

Anurag Ranjan and Michael J Black. Optical flow estimation using a spatial pyramid network. In CVPR, 2017. 6

Danilo Jimenez Rezende, SM Ali Eslami, Shakir Mohamed, Peter Battaglia, Max Jaderberg, and Nicolas Heess.
Unsupervised learning of 3d structure from images. In NIPS, 2016. 3, 4, 9

Mathieu Salzmann and Raquel Urtasun. Physically-based motion models for 3d tracking: A convex formulation.
In ICCV, 2011. 3

Tianjia Shao, Aron Monszpart, Youyi Zheng, Bongjin Koo, Weiwei Xu, Kun Zhou, and Niloy J Mitra. Imagining
the unseen: Stability-based cuboid arrangements for scene understanding. ACM TOG, 33(6), 2014. 2

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In CVPR, 2015. 8, 9

Marek Vondrak, Leonid Sigal, and Odest Chadwicke Jenkins. Dynamical simulation priors for human motion
tracking. IEEE TPAMI, 35(1):52–65, 2013. 3

Jacob Walker, Abhinav Gupta, and Martial Hebert. Dense optical flow prediction from a static image. In ICCV,
2015. 3

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
MLJ, 8(3-4):229–256, 1992. 4

Jiajun Wu, Ilker Yildirim, Joseph J Lim, William T Freeman, and Joshua B Tenenbaum. Galileo: Perceiving
physical object properties by integrating a physics engine with deep learning. In NIPS, 2015. 3

Jiajun Wu, Joseph J Lim, Hongyi Zhang, Joshua B Tenenbaum, and William T Freeman. Physics 101: Learning
physical object properties from unlabeled videos. In BMVC, 2016. 3

Jiajun Wu, Joshua B Tenenbaum, and Pushmeet Kohli. Neural scene de-rendering. In CVPR, 2017. 3

Tianfan Xue, Jiajun Wu, Katherine Bouman, and Bill Freeman. Visual dynamics: Probabilistic future frame
synthesis via cross convolutional networks. In NIPS, 2016. 3

Alan Yuille and Daniel Kersten. Vision as bayesian inference: analysis by synthesis? TiCS, 10(7):301–308,
2006. 3

11



Renqiao Zhang, Jiajun Wu, Chengkai Zhang, William T Freeman, and Joshua B Tenenbaum. A comparative
evaluation of approximate probabilistic simulation and deep neural networks as accounts of human physical
scene understanding. In CogSci, 2016. 2

Bo Zheng, Yibiao Zhao, Joey Yu, Katsushi Ikeuchi, and Song-Chun Zhu. Scene understanding by reasoning
stability and safety. IJCV, 112(2):221–238, 2015. 2

Song-Chun Zhu and David Mumford. A stochastic grammar of images. Foundations and Trends R© in Computer
Graphics and Vision, 2(4):259–362, 2007. 3

12


	Introduction
	Related Work
	Visual De-animation
	Overview
	Physical Object and Scene Modeling
	Physical Simulation and Prediction
	Re-rendering with a Graphics Engine

	Evaluation
	Billiard Tables: A Motivating Example
	Billiard Tables: Transferring to Real Videos
	The Blocks World

	Discussion

